首页 > 财经 > 正文
Qzone
微博
微信

科学家建立人工智能新模型,为发现新稀土化合物铺平道路

财经 前瞻网 2022-03-22 16:21

1

近日,来自艾姆斯实验室和德克萨斯A&M大学的研究人员训练了一个机器学习(ML)模型来评估稀土化合物的稳定性。他们开发的框架建立在目前最先进的化合物实验和理解化学不稳定性的方法之上。

自20世纪中期以来,埃姆斯实验室一直是稀土研究的领导者。稀土元素具有广泛的用途,包括清洁能源技术、能源储存和永久磁铁。

目前的方法是基于机器学习(ML),这是人工智能(AI)的一种形式,由计算机算法驱动,通过数据使用和经验进行改进。研究人员使用升级后的艾姆斯实验室稀土数据库(RIC 2.0)和高通量密度泛函理论(DFT)来为他们的ML模型建立基础。

高通量筛选是一种计算方案,允许研究人员快速测试数百个模型。DFT是一种量子力学方法,用于研究许多系统的热力学和电子特性。基于这些信息的收集,开发的ML模型使用回归学习算法来评估化合物的相稳定性。

科学家称,机器学习很重要,因为当谈论新的成分时,稀土界每个人都知道有序材料,然而,当你把无序材料添加到已知材料中时,情况就非常不同了。得到的组合数量变得非常大,往往是几千或几百万,你不能仅用理论或实验来研究所有可能的组合。

研究员解释说,材料分析是基于一个离散的反馈循环,其中AI/ML模型使用新的DFT数据库,根据从实验中获得的实时结构和相信息进行更新。这个过程确保信息从一个步骤带到下一个步骤,并减少犯错的机会。

研究员强调,这项工作只是一个开始。该团队正在探索这种方法的全部潜力,但他们乐观地认为该框架在未来将有广泛的应用。

该研究论文题为'Machine-learning enabled thermodynamic model for the design of new rare-earth compounds',已发表在Acta Materialia期刊上。

前瞻经济学人APP资讯组

 

本文来源前瞻网,转载请注明来源。本文内容仅代表作者个人观点,本站只提供参考并不构成任何投资及应用建议。(若存在内容、版权或其它问题,请联系)

 

责任编辑: 4161HSS

责任编辑: 4161HSS
人家也是有底线的啦~
广告
Copyright © 2018 TOM.COM Corporation, All Rights Reserved 雷霆万钧版权声明
违法信息/未成年人举报:010-85181169     举报邮箱/未成年人举报:jubao@tomonline-inc.com